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Ballistic-Diffusive Heat
Conduction in Thin Films by
Phonon Monte Carlo Method:
Gray Medium Approximation
Versus Phonon Dispersion
The gray medium approximation treating all phonons with an averaged and representa-
tive mean-free-path (MFP) is an often used method in analyzing ballistic-diffusive heat
conduction at nanoscale. However, whether there exists a reasonable value of the aver-
age MFP which effectively represents the entire spectrum of modal MFPs remains
unclear. In this paper, phonon Monte Carlo (MC) method is employed to study the effects
of the gray medium approximation on ballistic-diffusive heat conduction in silicon films
by comparing with dispersion MC simulations. Four typical ways for calculating the
average MFP with gray medium approximation are investigated. Three of them are based
on the weighted average of the modal MFPs, and the remaining one is based on the
weighted average of the reciprocals of the modal MFPs. The first three methods are
found to be good at predicting effective thermal conductivity and heat flux distribution,
but have difficulties in temperature profile, while the last one performs better for temper-
ature profile than effective thermal conductivity and heat flux distribution. Therefore,
none of the average MFPs can accurately characterize all the features of ballistic-
diffusive heat conduction for the gray medium approximation. Phonon dispersion has to
be considered for the accurate thermal analyses and modeling of ballistic-diffusive heat
transport. Our work could be helpful for further understanding of phonon dispersion and
more careful use of the gray medium approximation. [DOI: 10.1115/1.4048093]

Keywords: ballistic-diffusive heat conduction, phonon Monte Carlo, gray medium
approximation, phonon dispersion

1 Introduction

The effective thermal management of electronic devices, which
play an irreplaceable role in modern nanotechnology, is of great
importance to their further miniaturization and integration. Nowa-
days, the characteristic length in these devices has reduced to
nanoscale [1] and the power dissipation is becoming increasingly
high. In 2018, the heat flux of hot spots in integrated circuits had
been reported to be around 1000 W/cm2 [2]. The high magnitude
of power density and its highly nonuniform spatial distribution
raise the average die temperature and produce local hot spots,
impairing the reliability and lifetime [3]. Therefore, accurate ther-
mal analyses are essential to evaluate the thermal design and find
better designs to improve the performance of electronic devices.

Heat conduction is the primary way of cooling inside electronic
devices and has received a great deal of recent attention. At mac-
roscopic scale, heat conduction follows traditional Fourier’s law,
but when it comes to nanoscale, a growing number of experimen-
tal measurements have observed the breakdown of Fourier’s law
[4–10], motivating the study of the mechanism of non-Fourier
heat conduction as well as new techniques which can well charac-
terize such phenomena. A powerful approach to understand the
thermal conduction is by investigating phonon transport, in which
phonon mean-free-path (MFP), a property describing the distance
the heat carrier can transmit thermal energy before being scat-
tered, is a critical factor. Phonon ballistic transport is one of the

main reasons for the failure of Fourier’s law at nanoscale [11,12].
The strength of phonon ballistic transport generally can be
described by Kn¼ l/L, in which l denotes the phonon MFP and L
the characteristic length of the system. When L is much larger
than l, the phonon–phonon scattering is sufficient and all phonons
travel diffusively, as a result of which Fourier’s law is valid. How-
ever, as L becomes comparable to l or even smaller than l, pho-
nons can directly arrive at the boundary without phonon–phonon
scattering. Such a process is termed as ballistic transport and can
invalidate Fourier’s law. In electronic devices, usually some pho-
nons are transported ballistically while others diffusively, the cor-
responding mechanism is ballistic-diffusive heat transport
[13–15]. There are three typical features of ballistic-diffusive heat
conduction: (1) size effect of thermal conductivity [16,17], which
refers to the reduction of thermal conductivity as the length scale
decreases; (2) boundary temperature jump [18], which refers to
the difference between the boundary temperature and the phonon
bath temperature as shown in Fig. 1(a); (3) boundary heat flux slip
[19,20], which refers to the heat flux reduction observed near the
lateral adiabatic boundaries as shown in Fig. 1(b). The intensities
of these features increase with L decreasing, and a favorable ther-
mal analysis method is expected to correctly capture the features.

Phonons normally have a wide range of frequency spectrum
and their MFPs span several orders of magnitude, for example,
from 1 nm to 100 lm in room temperature silicon [21], making it
difficult to completely fathom phonon transport. Efforts have been
devoted to building prediction models for the effective thermal
conductivity that can take phonon dispersion into consideration
[22–25]. The basic idea is to calculate the contributions of all pho-
non modes and sum them up. Numerical methods, such as phonon
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Monte Carlo (MC) which solves the frequency-dependent phonon
Boltzmann transport equation (BTE) [26–32], are also widely
used in the studies of ballistic-diffusive heat conduction. Recently,
laser-based measurement techniques were employed to extract the
phonon MFP spectra successfully [33–35]. Considering phonon
dispersion is supposed to get the most accurate results, but it is
mostly too complex and time-consuming. As a helpful simplifica-
tion, the gray medium approximation, which assumes phonon
properties to be frequency independent and averages the
frequency-dependent phonon properties over the phonon popula-
tion [28], has been extensively used. Under the condition of gray
medium approximation, an averaged and representative MFP (lav)
can be utilized to outline phonon transport, facilitating the fast
theoretical and numerical analyses of ballistic-diffusive heat con-
duction. Majumdar [36] developed a simple expression for the
effective thermal conductivity of thin films as keff=kbulk ¼
1=ð1þ 4

3
lav

L Þ (keff and kbulk denote the effective and bulk material
thermal conductivity, respectively). Alvarez and Jou [37] derived
an explicit prediction model of the thermal conductivity that fits
experimental measurements. Hua and Cao [38–40] concluded that
effective thermal conductivity of nanostructures can be written as
keff=kbulk ¼ 1=ð1þ a lav

L Þ where a is the geometry factor deter-
mined by the geometrical shape and heating scheme such as the
location of heat sources and sinks. This type of expression is also
valid in radial heat conduction [41]. The gray medium approxima-
tion has also been adopted in the researches of boundary tempera-
ture jump and boundary heat flux slip. The former is discovered to
be proportional to the MFP at the corresponding temperature
[18,42], and models established by different methods [43–46] can
readily estimate the jump value. The latter can be calculated by
the Fuchs–Sondheimer solution as an analogy to electrons [47]. It
is concluded that although phonon properties are simplified, gray
medium approximation does not impair the major characteristics
of ballistic transport and is efficient in mechanism investigations.

However, it also has some limitations. For example, a traditional
way to calculate the average MFP is

lav ¼
3kbulk

Cvav

(1)

but different ways of calculating the volumetric specific heat (C)
and average group velocity (vav) lead to different values of lav. For
silicon at 300 K, Chen [13] found that lav is 40.9 nm calculated by
Debye model, and it changes to 260.4 nm when considering dis-
persion. Jeong et al. [25] presented lav¼ 115 nm by extracting the
average MFP from the measured thermal conductivity. Maznev
et al. [9] suggested that the representative MFP should be about
0.5–1 lm according to the direct measurement of nondiffusive
thermal transport. Furthermore, the gray medium approximation
is reported to fail to predict the temperature accurately [48,49]. In
fact, the practicality of the gray medium approximation is highly
dependent on the choice of the average MFP, and detailed and in-
depth study on the influence of using an average MFP on thermal
analyses and whether there exists a reasonable choice of the value
is needed.

In the present work, we use phonon tracing MC method to
study the ballistic-diffusive heat conduction in silicon thin films,
focusing on comparisons between phonon dispersion and gray
medium approximation. By taking the results considering phonon
dispersion as a benchmark, four typical ways of calculating the
average MFP in gray medium approximation are compared. The
first three methods can be classified as being based on
the weighted average of the MFPs, while the last one is based on
the weighted average of the reciprocals of the MFPs. These meth-
ods are found to have their own drawbacks, and there does not
exist an appropriate choice of the average MFP that can exactly
reflect all the features of ballistic-diffusive heat conduction. This
can be interpreted in terms of a tradeoff between the accuracy of

Fig. 1 Schematics of ballistic-diffusive heat conduction in thin films [20]: (a) cross-plane heat conduction and
boundary temperature jump; (b) in-plane heat conduction and boundary heat flux slip
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cross section-related thermal properties and that of volume-related
thermal properties in gray medium approximation.

2 Methodology

2.1 Phonon Monte Carlo Method. The phonon BTE with
relaxation time approximation in steady-state is given by [50]

vp;x � rfp;x ¼
f 0
p;x � fp;x

sp;x
(2)

where vp;x, f 0
p;x, fp;x and sp;x denote the mode-dependent group

velocity vector, the phonon distribution function, the
Bose–Einstein distribution in equilibrium and the relaxation time,
respectively. Equation (2) is hard to be solved directly because it
involves variables in both real and momentum space [14]. Instead,
phonon MC method, which is especially useful for complex geo-
metric structures and readily incorporates different scattering
events, has been broadly employed. In this paper, we utilize pho-
non tracing MC method, which assumes that the properties of dif-
ferent phonon bundles are independent and each phonon bundle
can be tracked individually. Details of the gray medium phonon
tracing MC simulation can be found in Refs. [38], [39], and [43].

When considering phonon dispersion, the main difference is
that phonon bundles emitted from phonon baths will have differ-
ent properties, and their properties will be redetermined after
phonon–phonon scattering. The key point is to calculate the distri-
bution function from which phonon bundles are drawn. An
energy-based variance-reduced technique reported in Ref. [30] is
adopted, then the emitting distribution for phonon–phonon

scattering can be written as ðe0 � e0
Teq
ÞD=sðx; p; TÞd x, in which

e0 ¼ �h x f 0, D denotes the volumetric density of state and Teq is
an artificially prescribed reference temperature. For small

temperature differences, e0 � e0
Teq

can be simplified as

ðT � TeqÞðde0
Teq
=dTÞ, and the emitting distribution is linearized as

ðT � TeqÞðde0
Teq
=dT

�
Dd x=sðx; p;TeqÞ [31]. It should be noted

that this distribution does not depend on ðT � TeqÞ once normal-

ized and ðde0
Teq
=dTÞD ¼ Cp;x where Cp,x denotes the modal spe-

cific heat. Thus, the probability of drawing a phonon bundle at
polarization p and frequency x after phonon–phonon scattering is

Wph�ph ¼
Cp;xvp;x=lp;xP

p

ð
x

Cp;xvp;x=lp;x
� �

dx
dx (3)

in which lp;x is the modal MFP. For phonon bundles emitted from
phonon baths, a similar derivation is conducted and the probabil-
ity function is

Wph�bnd ¼
Cp;xvp;xP

p

Ð
xCp;xvp;xdx

dx (4)

Compared to Eq. (4), the term lp;x in Eq. (3) is closely related to
the different ways of generating new phonons between
phonon–phonon scattering and phonon-boundary scattering. For
phonon–phonon scattering, the probability function is calculated
based on the contribution of each phonon mode to the pseudo-
energy, while for phonon-boundary scattering based on their con-
tributions to heat flux. After getting Eqs. (3) and (4), phonon trac-
ing MC that considers phonon dispersion can be realized by
extending the gray medium MC program [26]. In practice, the
integrals over frequency are converted into the sums of many tiny
intervals. It is worth noting that how to define temperature in
ballistic-diffusive heat conduction remains to be controversial
[13,51]. In this paper, the local equivalent equilibrium tempera-
ture which is a representation of the average energy of all phonons

around a local postion is used [13,39,52]. It is equivalent to the
equilibrium temperature of those phonons if they redistribute adia-
batically to an equilibrium state, and is able to obtain results
which agree well with those of Fourier’s law when the system
scale is large enough [53].

The phonon dispersion can be described by experiments [54],
theoretical models [23] or first-principle calculations [55]. For sil-
icon, the explicit Brillouin zone boundary condition (BZBC)
model is selected since it reproduces the experimental data over
the first Brillouin zone [24]. The dispersion relations for longitudi-
nal (subscript “L”) and transverse (subscript “T”) phonon
branches are

xL ¼ v0;Ljmj� þ ðxm;L � v0;LjmÞj�2 (5a)

xT ¼ v0;Tjmj� þ ð3xm;T � 2v0;TjmÞj�2 þ ðv0;Tjm � 2xm;TÞj�3

(5b)

where j� ¼ j=jm is a dimensionless wave number, jm ¼ 2p=a is
the wave number at the edge of the first Brillouin zone, xm is the
upper limit of the angular frequency and v0 is the group velocity
at the low-frequency limit (j! 0). The first Brillouin zone is
often assumed to be isotropic, which means the dispersion curves
are identical in any wavevector direction. At room
temperature (T¼ 300 K), experimental data in the [100] direction
of silicon gives [24]: a¼ 0.543 nm, xm;L ¼ 210kB=�h rad=s,
xm;T ¼ 570kB=�h rad=s, v0;L ¼ 8480 m=s, and v0;T ¼ 5860 m=s.
Relaxation times are also required to carry out the dispersion MC.
In this paper, the impurity scattering (I) and three phonon scatter-
ing (3 ph) in silicon are considered, and they are additive accord-

ing to the Matthiessen’s rule: s�1
j ¼ s�1

I;j þ s�1
3ph;j for j¼ T

(transverse), L (longitudinal). The impurity relaxation time can be

expressed as (Rayleigh regime): sI;j ¼ BI;jðxÞx4, and the usual N
(normal) and U (umklapp) relaxation times for different polariza-

tion modes are: s�1
3ph;L ¼ BLx2T3, s�1

3ph;T ¼ s�1
N;T þ s�1

U;T with

s�1
N;T ¼

BN;TxT4; for x < x1=2; T

0; for x > x1=2;T

�

and

s�1
U;T ¼

0; for x < x1=2;T

BU;T
x2

sinhð�hx=kBTÞ ; for x > x1=2;T

8><
>:

[56]. BI , BL, BN;T and BU;T are the relaxation time parameters
given in literature [24]. The modal MFP equals to the product of
modal group velocity and modal relaxation time, lp;x ¼ vp;xsp;x.
The bulk material thermal conductivity predicted by the BZBC
model is kbulk ¼ 1

3

P
p

Ð
xCp;xvp;xlp;xdx ¼ 143:1 W=ðm � KÞ. The

reason why it is slightly lower than the textbook value
(150 W=ðm � KÞ) is the neglect of the contribution of optical pho-
nons. The MC simulation with BZBC model is able to reproduce
the experimental results of thermal conductivity, which will be
shown in Sec. 3.

2.2 Average MFP. Four different methods to define the aver-
age MFP denoted by lav;1, lav;2, lav;3; and lav;4 will be introduced
and compared in this section. The first two are both obtained by
Eq. (1), but the values of the bulk material thermal conductivity,
specific heat, and average group velocity are different. The most
conventional model for predicting the specific heat is Debye’s

theory, which gives CðTÞ ¼ 9 qR
M

T
HD

� �3 ÐHD=T
0

n4en=ðen � 1Þ2dn

and 1
v3

av;0

¼ 1
3
ð 1

v3
0;L

þ 2
v3

0;T

Þ. Here, q, R, M, and HD denote the density,

universal gas constant, molar mass, and Debye temperature,
respectively. For silicon at room temperature, it is derived that
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C1=q ¼ 715 J=ðkg � KÞ and vav;1 ¼ 6375 m=s. Thus, we have
lav;1 ¼ ð3kbulk=C1vav;1Þ ¼ 40:4 nm, which is the textbook value of
the MFP for silicon at 300 K [43,56]. However, Debye specific
heat does not distinguish the contribution of acoustic phonons and
optical phonons, of which the latter contribute very little to
thermal conductivity since their group velocities are close to zero.
In fact, optical phonons are customarily ignored in heat conduc-
tion. In addition, the elastic wave approximation is bound to
overestimate the average group velocity. Therefore, lav;1 is an
underestimated average MFP, which will reduce the size effect
and over-predict the effective thermal conductivity.

In practice, it is more reasonable to only include the specific
heat of acoustic phonons and calculate the average group velocity

by the modal specific heat, that is C2 ¼
P3

p¼1

Ðxmax

0
Cp;xdx and

vav;2 ¼
�
ð
P

p

Ðxmax

0
Cp;xvp;xdxÞ=ð

P3
p¼1

Ðxmax

0
Cp;xdxÞ

�
[57].

Based on the BZBC model, we have C2=q ¼ 424 J=ðkg � KÞ and
vav;2 ¼ 2463 m=s. The result that C2 is nearly two-thirds of C1

accords with the report that about one-third of the specific heat is
due to optical phonons in room-temperature silicon [13], verifying
the BZBC model. In this way, the average MFP is calculated as
lav;2 ¼ ð3kbulk=C2vav;2Þ ¼ 175:5 nm. By rewriting the formula for
lav;2 as

lav;2 ¼

P
p

ð
0xmaxCp;x

vp;xlp;xdx

P
p

ð
0xmaxCp;x

vp;xdx
(6)

It can be interpreted as a weighted average of the modal MFPs
where the weighting coefficient is fixed as Cp;xvp;x. Thanks to the
more careful treatment with phonon dispersion, the effective ther-
mal conductivity based on lav;2 has a closer agreement with disper-
sion results than lav;1 [58]. However, when there is ballistic
transport, the size effect on different phonon modes is different,
making the contributions of different phonon modes to the thermal
conductivity vary with the system length. The weighting coeffi-
cient of lav;2 is based on the modal contributions in bulk material,
thus it cannot reflect this change.

To overcome this drawback, a method to extract the average
MFP by fitting the size-dependent thermal conductivity is
proposed. When considering phonon dispersion, a robust model of
the varied effective thermal conductivity is keff ¼
1
3

P
p

Ð
xCp;xvp;xlp;xFðp;xÞd x where Fðp;xÞ denotes the bound-

ary scattering function [22]. Previous studies [28,29,57,58] have
demonstrated that the effective thermal conductivities obtained by
this model have a similar variation trend with the prediction of the
gray medium models, so an average MFP can be extracted by
using a gray medium model to fit the varied effective thermal con-
ductivity. For silicon films, Majumdar’s model for cross-plane
heat conduction [36] is employed to calculate Fðp;xÞ and fit the
dispersion results, then we have lav;3 ¼ 393:7 nm. The gray
medium approximation using lav;3 ought to have the best perform-
ance in the prediction of the effective thermal conductivity. The
validity of the fitting will be verified by the results in Sec. 3. It is
worthy of note that lav;3 is still a weighted average of the MFPs
with the weighting coefficient being implicit.

In addition to averaging based on the contribution of thermal
conductivity, another kind of the average MFP can be defined
from the point of temperature. Just like photons, the equivalent
equilibrium temperature of phonons is associated with the density

of local emitted power by dQe=dV ¼ 4erPhononT4 under the gray

medium approximation [43]. Here, e ¼ ðlavÞ�1
and rPhonon denote

the phonon absorption coefficient [36] and phonon Stefan–
Boltzmann constant [59], respectively. When considering phonon

dispersion, the relation is dQe=dV ¼
P

p

Ðxmax

0
ep;xep;xðTÞdx

where ep;x ¼ ðlp;xÞ�1
is the modal phonon absorption coefficient

and ep;xðTÞ the modal phonon emissive intensity. An average

absorption coefficient is set to satisfy
P

p

Ðxmax

0
ep;xep;xðTÞdx

¼ eav

P
p

Ðxmax

0
ep;xðTÞdx, then the average MFP can be

defined as lav;4 ¼ ðeavÞ�1 ¼ ½
�P

p

Ðxmax

0
ðlp;xÞ�1ep;xðTÞdx

�
=�P

p

Ðxmax

0
ep;xðTÞdx

�
��1

. For small temperature differences,

ep;xðTÞ / Cp;xvp;x[36], and the expression is converted to

lav;4 ¼

P
p

ðxmax

0

lp;xð Þ�1Cp;xvp;xd x

P
p

ðxmax

0

Cp;xvp;xd x

2
6664

3
7775

�1

(7)

According to the BZBC model, it is derived that lav;4 ¼ 43:2 nm,
which happens to be almost the same with the value of lav;1

because of the particular dispersion relation of silicon. Ignoring
the coincidence, lav;4 is expected to have an advantage in predict-
ing the temperature over other methods. The difference between
the values of lav;3 and lav;4 suggests that there would be a contra-
diction between the accuracy of the effective thermal conductivity
and the temperature, which will be displayed and discussed in
detail in Sec. 3.

3 Results and Discussion

To examine the performance of the four ways to calculate the
average MFP, cross-plane and in-plane heat conduction in silicon
films shown in Fig. 1 are simulated with gray-medium approxima-
tion and phonon dispersion in this section. The films are heated by
two heat baths with different temperatures, phonons will travel
from the hot bath to the cold one, producing heat flow. During
their travel, they will suffer phonon–phonon scattering and
phonon–boundary scattering. The two cases are chosen not only
for the fact that they can exhibit the features of ballistic-diffusive
heat conduction comprehensively, but also considering the feasi-
bility of using dispersion MC as a benchmark. More importantly,
a more general heat conduction problem can be viewed in some
extend as the composition of the two simple cases [38]. In present
MC simulations, the bath temperatures are set to be Th ¼ 305 K
and Tc ¼ 295 K, and phonon dispersion at 300 K is used. The
effective thermal conductivity is defined as keff ¼ ððq=LÞ=
Th � TcÞ. For in-plane heat conduction, the focus is on the impact

Fig. 2 Effective thermal conductivity varying with the film
length (L) in cross-plane heat conduction. The model comes
from Ref. [36], the experimental and other numerical results
come from Refs. [8] and [17].
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of the lateral boundaries, so the characteristic length is the film
lateral length (Ly), and Lx is set to be large enough to neglect the
size effect in the temperature difference direction. The lateral
boundaries are set to be diffusive to generate an evident size effect
and boundary heat flux slip. The numbers of simulated phonon
bundles are 2� 106 for the cross-plane case and 2� 108 for the
in-plane case. They are large enough to suppress the random error.
All results shown below are normalized as X ¼ x=L, Y ¼ y=Ly,
T� ¼ ððT � TcÞ=ðTh � TcÞÞ, and q� ¼ q=qFourier, in which qFourier

is the heat flux predicted by Fourier’s law and is independent of
the y coordinate.

3.1 Cross-Plane Heat Conduction. The ratios of the effec-
tive thermal conductivity to the bulk material value obtained by
dispersion MC, as well as those of the gray medium MC using dif-
ferent values of the average MFP, are shown in Fig. 2. Since the
values of lav;1 and lav;4 are almost the same, their results are coin-
cident. When L ¼ 100 lm, all simulated results are close to the

bulk material value and phonons are in diffusive regime (Fourier’s
law). As L decreases, no matter considering phonon dispersion or
using the gray medium approximation, the simulated effective
thermal conductivities gradually decrease, indicating the enhance-
ment of ballistic transport. But for the same L, the size effect of
the effective thermal conductivity is different for different simula-
tion schemes. Take L¼ 1 lm as an example, the most remarkable
reduction is predicted by dispersion MC (keff=kbulk ¼ 0:57),
followed by lav;3 (0.64), lav;2 (0.80), and lav;1 (0.92). When L
decreases to 1 nm, nearly all phonons are in ballistic regime (Casi-
mir limit) and the corresponding effective thermal conductivities
approach 0. Expectedly, the gray medium approximation is capa-
ble of reflecting the size effect of thermal conductivity qualita-
tively, but different values of the average MFP produce
significantly different quantitative results. To check the accuracy
of the MC simulations, experimental results in Ref. [8] and simu-
lation results in Ref. [17] are illustrated in Fig. 2 too. It can be
seen that results by phonon dispersion or using lav;3 as the average
MFP have the best consistency with previous experiment and

Fig. 3 Temperature distribution varying with the film length (L) in cross-plane heat conduction. “Diffusive” refers to
diffusive limit, the corresponding temperature distribution follows Fourier’s law. “Ballistic” refers to the ballistic limit,
and the corresponding temperature is a constant inside the film.
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simulation, followed by those using lav;2 and the worst is lav;1

(lav;4). In addition, theoretical predictions based on Majumdar’s
model [36] are also given in Fig. 2. The acceptable agreement
between the solid line and the cross symbols verifies the validity
of fitting the dispersion results by Majumdar’s model with lav;3.
To accurately predict the effective thermal conductivity, lav;3

seems to be the better one.
However, when it comes to the temperature distribution, the

conclusion is just the opposite. The temperature distributions of
different film lengths are illustrated in Fig. 3 where the results in
diffusive limit and ballistic limit are also depicted. Similar to the
effective thermal conductivity, when L ¼ 100 lm, the temperature
profiles look like the prediction of Fourier’s law and there are no
boundary temperature jumps. As L decreases, all simulations
exhibit that the temperature profiles gradually deviate from the
diffusive prediction and the boundary temperature occurs, but the
degree of deviation and temperature jump values are different.
For instance, at L¼ 100 nm, the results of phonon dispersion and
lav;1 (lav;4) have the minimum deviations, and the corresponding
dimensionless boundary temperature jumps are less than 0.2. For
those of lav;2 and lav;3, the deviations raise and the corresponding
temperature jump values are about 0.3 and 0.4, respectively.
When it comes to L¼ 1 nm, all MC simulations predict the almost
horizontal temperature profiles and the boundary temperature
jumps are close to the maximum value (0.5) in ballistic limit.
Comparing the gray medium MC to the dispersion MC, it is the
result of lav;1 (lav;4) that has the best accuracy in temperature dis-
tribution on all scales while using lav;2 or lav;3 results in certain
discrepancies in the intermediate scales (L¼ 1 lm, 100 nm,
10 nm). From the point of the temperature, lav;4 appears to be the
better choice. Combining the results of Figs. 2 and 3, it is found
that the gray medium approximation cannot accurately predict the
effective thermal conductivity and the temperature distribution at
the same time.

The performance of different average MFPs is strongly related
to their calculation methods. The effective thermal conductivity in
ballistic-diffusive conduction is calculated by heat flux, which is a
cross section-related thermal property. As a contrast, the equiva-
lent equilibrium temperature is derived from the local emitted
power density, which is a volume-related thermal property. An
average method cannot take care of the cross section-related and
volume-related thermal properties simultaneously. Consequently,
the average method based on the modal contributions of the

thermal conductivity (lav;3) predicts effective thermal conductiv-
ities better than temperatures, while the method based on the
modal contribution of the emitted power density (lav;4) is prefera-
ble to predict the temperature. A good value of the average MFP
is supposed to calculate both the thermal conductivity and the
temperature distribution accurately on all scales, but it is
extremely hard to find such a value owing to the natural limitation
of the gray medium approximation. It should be noted that
although there are other temperature definitions for nonequili-
brium heat conduction [29], since they are all based on some kinds
of volumetric energy density, the average MFP based on tempera-
ture is expected to always have difficulty in accurate predicting
the cross section-related thermal properties.

3.2 In-Plane Heat Conduction. The effective thermal con-
ductivities simulated by the dispersion and gray medium MC sim-
ulations in in-plane heat conduction are depicted in Fig. 4, in
which the predictions of a theoretical model [19] based on analyti-
cally solving gray medium BTE are illustrated too. The major
concern of the in-plane heat conduction is the interactions
between phonons and the lateral adiabatic walls, so the value of
Lx is set to be 1� 10�4 m in MC simulations to eliminate the x-
directional size effect, and the lateral boundary conditions are set
as diffusive reflection to generate obvious boundary heat flux slip.
As well as decreasing L in the cross-plane case, decreasing Ly in
the in-plane case leads to the reduction of the effective thermal
conductivity, which varies from the bulk material value at Ly ¼
100 lm to nearly zero at Ly ¼ 1 nm. For the intermediate length
scales, the difference between the simulation results has the same
trend with Fig. 2, that is, gray medium approximation with lav;3

has the minimum difference with phonon dispersion, and the dif-
ference increases for lav;2 and reaches its maximum when using
lav;1 (lav;4). Gray medium model with lav;3 is also capable of
approximating the results of dispersion MC, as the solid line has a
favorable agreement with the cross symbols in Fig. 4. Moreover,
for in-plane heat conduction, more experimental measurements of
the thermal conductivity [4–7] can be found and their results are
shown in Fig. 4. In general, our MC results by dispersion or lav;3

are somewhat lower than these experimental data, while the
results by lav;2 are higher. The quantitative difference between
present dispersion MC and the experimental data may be related
to the diffusive lateral boundary, but it does not affect the compar-
ison of the gray medium approximation and phonon dispersion.

Furthermore, detailed heat flux distributions of the MC simula-
tion and the model are shown in Fig. 5, in which some insets show
the enlarged figures of the bottom regions. The model always has
an excellent consistency with the gray medium MC using the
same average MFP. Compared to the dispersion MC, the gray
medium simulation and model are able to qualitatively reflect the
reduced heat flux near the boundaries who intensifies with the lat-
eral length decreasing, but as expected, the value of the average
MFP has a decisive role on the quantitative accuracy. For
Ly ¼ 100 lm, all heat flux profiles are close to the vertical line
predicted by Fourier’s law, except for the results of dispersion
MC in which a slight boundary heat flux slip takes place, as the
enlarged figure in Fig. 5(a) shows. With Ly decreasing, the dimen-
sionless heat fluxes near to the boundaries in every MC simulation
start to get less than 1. The most remarkable slip effect is pre-
dicted by dispersion MC, which can be approached by gray MC
using lav;3. The gray simulation based on lav;2 departs from the dis-
persion one, and the departure is even more for the simulation
based on lav;1 (lav;4). For instance, when Ly ¼ 100 nm, the values
of the heat fluxes predicted by dispersion MC or gray MC with
lav;3 roughly lie between 0.3 and 0.4, while the range is about
0.5–0.6 and 0.7–0.9 for the gray MC using lav;2 and lav;1 (lav;4),
respectively. It is the enhancement of phonon boundary scattering
that causes the dimensionless heat fluxes be lower than 1 every-
where in the film. When Ly further decreases to 1 nm, the phonon
boundary scattering is so strong that all simulated results come

Fig. 4 Effective thermal conductivity varying with the lateral
length (Ly) in in-plane heat conduction. The model comes from
Ref. [19], and the experimetal data are extracted from Asheghi
et al. [4]; Ju and Goodson [5]; Liu and Asheghi [6]; Song and
Chen [7].
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near to the ballistic limit value (0). Although the value of lav;3 is
calculated on account of the size effect in cross-plane heat con-
duction, it still performs better than other values in predicting the
effective thermal conductivity and the heat flux distribution in the
in-plane case. The results of in-plane heat conduction validate pre-
vious analyses about the accuracy of the four ways to calculate
the average MFP.

4 Conclusions

We use phonon MC method to compare the use of gray medium
approximation and phonon dispersion in ballistic-diffusive heat
conduction of silicon films. By taking the results considering pho-
non dispersion as a benchmark, four different approaches to calcu-
late the average MFP with the gray medium approximation are
studied, which are: (1) the kinetic theory that uses Debye’s theory
to predict the specific heat and average group velocity (lav;1); (2)
the weighted average of the modal MFPs where the weighting
coefficient is the product of the modal specific heat and group
velocity (lav;2); (3) extracting the average MFP from the fitting of

the size-dependent effective thermal conductivity by a gray medium
model (lav;3); and (4) the inverse of the weighted average phonon
emissivity (lav;4). The first three methods can be classified as being
based on the weighted average of the MFPs, while the last one is
based on the weighted average of the reciprocals of the MFPs.

These methods are found to have different limitations. lav;1

underestimates the average MFP since the specific heat and the
average group velocity in Debye’s model are unrealistically high
for heat conduction. Dealing with phonon dispersion more care-
fully, lav;2 ought to be more reasonable and accurate, but it still
fails in predicting the size-dependent contribution of each phonon
mode to the thermal conductivity. As an improvement, lav;3 accu-
rately reflects the reduction of the thermal conductivity and the
heat flux on all scales, but its accuracy in calculating the tempera-
ture distribution is the worst. For lav;4, the performance is just the
reverse, namely, it obtains the most accurate temperature distribu-
tion at the sacrifice of the thermal conductivity and the heat flux
distribution.

The failure to find a representative and robust average MFP is
caused by the drawback of the gray medium approximation. By

Fig. 5 Heat flux distribution varying with the lateral length (Ly) in in-plane heat conduction. The model comes from
Ref. [19], and the insets show the enlarged figures of the bottom boundary for some dense results.
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lumping all phonons together, the gray medium approximation
cannot simultaneously take the contribution of different phonon
modes to the heat flux and the emitted power density into consid-
eration, resulting in the tradeoff between the accuracy of the cross
section-related thermal properties (the effective thermal conduc-
tivity and the heat flux distribution) and that of the volume-related
thermal property (the equivalent equilibrium temperature). Accu-
rate predictions of ballistic-diffusive heat conduction must take
into account phonon dispersion.
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Nomenclature

a ¼ lattice constant
BTE ¼ Boltzmann transport equation

C ¼ volumetric specific heat capacity
D ¼ volumetric density of state
e ¼ energy distribution function
f ¼ phonon distribution function

f 0 ¼ Bose–Einstein distribution
k ¼ thermal conductivity

Kn ¼ Knudsen number
l ¼ phonon mean-free-path

L ¼ characteristic length of the system
lav ¼ average phonon mean-free-path

MC ¼ Monte Carlo
T ¼ temperature
v ¼ phonon group velocity
e ¼ phonon absorption coefficient
s ¼ phonon relaxation time
x ¼ phonon angular frequency
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